<< /S /GoTo /D (section.6.4) >> << /S /GoTo /D (subsection.2.1.2) >> endobj 742.3 799.4 0 0 742.3 599.5 571 571 856.5 856.5 285.5 314 513.9 513.9 513.9 513.9 777.8 777.8 1000 500 500 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 << /S /GoTo /D (section.1.1) >> << /S /GoTo /D (chapter.5) >> << /S /GoTo /D (subsection.4.2.2) >> << /S /GoTo /D (section.6.1) >> 850.9 472.2 550.9 734.6 734.6 524.7 906.2 1011.1 787 262.3 524.7] << /Widths[1000 500 500 1000 1000 1000 777.8 1000 1000 611.1 611.1 1000 1000 1000 777.8 Equally important, Fourier analysis is the tool with which many of the everyday phenomena - the endobj /Subtype/Type1 743.3 743.3 613.3 306.7 514.4 306.7 511.1 306.7 306.7 511.1 460 460 511.1 460 306.7 (Two dimensions) endobj endobj >> 513.9 770.7 456.8 513.9 742.3 799.4 513.9 927.8 1042 799.4 285.5 513.9] << %PDF-1.5 (The heat kernel) 777.8 777.8 1000 1000 777.8 777.8 1000 777.8] xڅ��j�0E���YJO���]�)Z (Distributions: definition) >> << /Filter /FlateDecode �hw�q���//�~�w* 35 0 obj endobj /D [194 0 R /XYZ 159.667 699.082 null] >> 136 0 obj (The Jacobi theta function) endobj /FirstChar 33 67 0 obj Fourier Transform series analysis, but it is clearly oscillatory and very well behaved for t>0 ( >0). << /S /GoTo /D (section.5.3) >> << /S /GoTo /D (section.5.5) >> �l��;�I��o����%�륺Mf�t�z����3C���! 147 0 obj 666.7 666.7 666.7 666.7 611.1 611.1 444.4 444.4 444.4 444.4 500 500 388.9 388.9 277.8 endobj endobj /FontDescriptor 23 0 R (Wave Equations) 47 0 obj endobj /FirstChar 33 /Font << /F30 190 0 R /F31 191 0 R >> (The Poisson Summation Formula, Theta Functions, and the Zeta Function) endobj endobj 176 0 obj endobj endobj X.�� endobj endobj 0 0 0 0 0 0 0 0 0 0 0 0 675.9 937.5 875 787 750 879.6 812.5 875 812.5 875 0 0 812.5 194 0 obj 167 0 obj (The group Z\(N\)) /Widths[314.8 527.8 839.5 786.1 839.5 787 314.8 419.8 419.8 524.7 787 314.8 367.3 (The Fourier transform for d>1) 92 0 obj endobj stream >> 611.1 798.5 656.8 526.5 771.4 527.8 718.7 594.9 844.5 544.5 677.8 762 689.7 1200.9 (Distributions) 23 0 obj >> << /S /GoTo /D (section.3.7) >> 79 0 obj endobj /BaseFont/HWKEUW+CMSY10 750 708.3 722.2 763.9 680.6 652.8 784.7 750 361.1 513.9 777.8 625 916.7 750 777.8 306.7 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 306.7 306.7 endobj endobj << >> 159 0 obj 156 0 obj 460 511.1 306.7 306.7 460 255.6 817.8 562.2 511.1 511.1 460 421.7 408.9 332.2 536.7 285.5 799.4 485.3 485.3 799.4 770.7 727.9 742.3 785 699.4 670.8 806.5 770.7 371 528.1 stream 51 0 obj >> 164 0 obj /Widths[285.5 513.9 856.5 513.9 856.5 799.4 285.5 399.7 399.7 513.9 799.4 285.5 342.6 �i�S��*%��x ��ϋ�c�w�`�1Ί������� endobj 84 0 obj 183 0 obj 8 0 obj 275 1000 666.7 666.7 888.9 888.9 0 0 555.6 555.6 666.7 500 722.2 722.2 777.8 777.8 endobj 285.5 513.9 513.9 513.9 513.9 513.9 513.9 513.9 513.9 513.9 513.9 513.9 285.5 285.5 59 0 obj 155 0 obj 60 0 obj << << /S /GoTo /D (subsection.3.4.3) >> << endobj 500 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 625 833.3 endobj endobj endobj /LastChar 196 95 0 obj endobj (Translations) (The Poisson kernel) 12 0 obj (Fourier series for d>1) endobj /Type/Font << /S /GoTo /D (subsection.2.1.1) >> /BaseFont/UZRCXL+CMTI10 /Name/F6 80 0 obj 9 0 obj /Type /Page 444.4 611.1 777.8 777.8 777.8 777.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 obj << /S /GoTo /D (chapter.6) >> /D [185 0 R /XYZ 106.869 668.127 null] 186 0 obj << /S /GoTo /D (section.4.3) >> endobj << (The zeta function and the Mellin transform of the theta function) 277.8 500] 168 0 obj /Name/F1 24 0 obj endobj (The zeta function, primes and Dirichlet's theorem) /BaseFont/MCADNU+CMR10 /Parent 192 0 R << /S /GoTo /D (section.3.1) >> endobj (Higher dimensions) (The heat and Schr\366dinger equations in higher dimensions) endobj endobj << /S /GoTo /D (section.2.2) >> (Distributional solutions of differential equations)